Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639635

RESUMO

Mauritian-origin cynomolgus macaques (MCMs) serve as a powerful nonhuman primate model in biomedical research due to their unique genetic homogeneity, which simplifies experimental designs. Despite their extensive use, a comprehensive understanding of crucial immune-regulating gene families, particularly killer Ig-like receptors (KIR) and NK group 2 (NKG2), has been hindered by the lack of detailed genomic reference assemblies. In this study, we employ advanced long-read sequencing techniques to completely assemble eight KIR and seven NKG2 genomic haplotypes, providing an extensive insight into the structural and allelic diversity of these immunoregulatory gene clusters. Leveraging these genomic resources, we prototype a strategy for genotyping KIR and NKG2 using short-read, whole-exome capture data, illustrating the potential for cost-effective multilocus genotyping at colony scale. These results mark a significant enhancement for biomedical research in MCMs and underscore the feasibility of broad-scale genetic investigations.

2.
Genome Res ; 33(3): 448-462, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854669

RESUMO

Macaques provide the most widely used nonhuman primate models for studying the immunology and pathogenesis of human diseases. Although the macaque major histocompatibility complex (MHC) region shares most features with the human leukocyte antigen (HLA) region, macaques have an expanded repertoire of MHC class I genes. Although a chimera of two rhesus macaque MHC haplotypes was first published in 2004, the structural diversity of MHC genomic organization in macaques remains poorly understood owing to a lack of adequate genomic reference sequences. We used ultralong Oxford Nanopore and high-accuracy Pacific Biosciences (PacBio) HiFi sequences to fully assemble the ∼5.2-Mb M3 haplotype of an MHC-homozygous, Mauritian-origin cynomolgus macaque (Macaca fascicularis). The MHC homozygosity allowed us to assemble a single MHC haplotype unambiguously and avoid chimeric assemblies that hampered previous efforts to characterize this exceptionally complex genomic region in macaques. The high quality of this new assembly is exemplified by the identification of an extended cluster of six Mafa-AG genes that contains a recent duplication with a highly similar ∼48.5-kb block of sequence. The MHC class II region of this M3 haplotype is similar to the previously sequenced rhesus macaque haplotype and HLA class II haplotypes. The MHC class I region, in contrast, contains 13 MHC-B genes, four MHC-A genes, and three MHC-E genes (vs. 19 MHC-B, two MHC-A, and one MHC-E in the previously sequenced haplotype). These results provide an unambiguously assembled single contiguous cynomolgus macaque MHC haplotype with fully curated gene annotations that will inform infectious disease and transplantation research.


Assuntos
Complexo Principal de Histocompatibilidade , Animais , Humanos , Macaca fascicularis/genética , Haplótipos , Macaca mulatta/genética , Complexo Principal de Histocompatibilidade/genética , Análise de Sequência de DNA/métodos , Alelos
3.
Gigascience ; 112022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640223

RESUMO

BACKGROUND: The Syrian hamster (Mesocricetus auratus) has been suggested as a useful mammalian model for a variety of diseases and infections, including infection with respiratory viruses such as SARS-CoV-2. The MesAur1.0 genome assembly was generated in 2013 using whole-genome shotgun sequencing with short-read sequence data. Current more advanced sequencing technologies and assembly methods now permit the generation of near-complete genome assemblies with higher quality and greater continuity. FINDINGS: Here, we report an improved assembly of the M. auratus genome (BCM_Maur_2.0) using Oxford Nanopore Technologies long-read sequencing to produce a chromosome-scale assembly. The total length of the new assembly is 2.46 Gb, similar to the 2.50-Gb length of a previous assembly of this genome, MesAur1.0. BCM_Maur_2.0 exhibits significantly improved continuity, with a scaffold N50 that is 6.7 times greater than MesAur1.0. Furthermore, 21,616 protein-coding genes and 10,459 noncoding genes are annotated in BCM_Maur_2.0 compared to 20,495 protein-coding genes and 4,168 noncoding genes in MesAur1.0. This new assembly also improves the unresolved regions as measured by nucleotide ambiguities, where ∼17.11% of bases in MesAur1.0 were unresolved compared to BCM_Maur_2.0, in which the number of unresolved bases is reduced to 3.00%. CONCLUSIONS: Access to a more complete reference genome with improved accuracy and continuity will facilitate more detailed, comprehensive, and meaningful research results for a wide variety of future studies using Syrian hamsters as models.


Assuntos
Cromossomos de Mamíferos , Mesocricetus , Animais , Cromossomos de Mamíferos/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mesocricetus/genética , Sequenciamento Completo do Genoma
4.
BMC Genomics ; 22(1): 182, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711930

RESUMO

BACKGROUND: Oxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing. RESULTS: We have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries' average read length over manual slow pipetting. CONCLUSIONS: SNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA
5.
medRxiv ; 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33655260

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the RT-LAMP assay's false-negative rate from July 16 to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.

6.
J Biomol Tech ; 32(3): 137-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35035293

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16, 2020, to November 19, 2020, surveillance samples (n = 4704) were collected from volunteers and tested for SARS-CoV-2 at 5 sites. Twenty-one samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, whereas 8 tested negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the false-negative rate of the RT-LAMP assay only from July 16, 2020, to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or fewer and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP-negative pools (2493 total samples) testing positive in the more-sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and that can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.


Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Sensibilidade e Especificidade
7.
Immunogenetics ; 72(4): 225-239, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32112172

RESUMO

Many medical advancements-including improvements to anti-rejection therapies in transplantation and vaccine development-rely on preclinical studies conducted in cynomolgus macaques (Macaca fascicularis). Major histocompatibility complex (MHC) class I and class II genes of cynomolgus macaques are orthologous to human leukocyte antigen complex (HLA) class I and class II genes, respectively. Both encode cell-surface proteins involved in cell recognition and rejection of non-host tissues. MHC class I and class II genes are highly polymorphic, so comprehensive genotyping requires the development of complete databases of allelic variants. Our group used PacBio circular consensus sequencing of full-length cDNA amplicons to characterize MHC class I and class II transcript sequences for a cohort of 293 Indonesian cynomolgus macaques (ICM) in a large, pedigreed breeding colony. These studies allowed us to expand the existing database of Macaca fascicularis (Mafa) alleles by identifying an additional 141 MHC class I and 61 class II transcript sequences. In addition, we defined co-segregating combinations of allelic variants as regional haplotypes for 70 Mafa-A, 78 Mafa-B, and 45 Mafa-DRB gene clusters. Finally, we defined class I and class II transcripts that are associated with 100 extended MHC haplotypes in this breeding colony by combining our genotyping analyses with short tandem repeat (STR) patterns across the MHC region. Our sequencing analyses and haplotype definitions improve the utility of these ICM for transplantation studies as well as infectious disease and vaccine research.


Assuntos
Haplótipos , Macaca fascicularis/genética , Complexo Principal de Histocompatibilidade/genética , Animais , Cruzamento , Indonésia , Repetições de Microssatélites
8.
J Immunol ; 202(1): 151-159, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530595

RESUMO

The FcγRs are immune cell surface proteins that bind IgG and facilitate cytokine production, phagocytosis, and Ab-dependent, cell-mediated cytotoxicity. FcγRs play a critical role in immunity; variation in these genes is implicated in autoimmunity and other diseases. Cynomolgus macaques are an excellent animal model for many human diseases, and Mauritian cynomolgus macaques (MCMs) are particularly useful because of their restricted genetic diversity. Previous studies of MCM immune gene diversity have focused on the MHC and killer cell Ig-like receptor. In this study, we characterize FcγR diversity in 48 MCMs using PacBio long-read sequencing to identify novel alleles of each of the four expressed MCM FcγR genes. We also developed a high-throughput FcγR genotyping assay, which we used to determine allele frequencies and identify FcγR haplotypes in more than 500 additional MCMs. We found three alleles for FcγR1A, seven each for FcγR2A and FcγR2B, and four for FcγR3A; these segregate into eight haplotypes. We also assessed whether different FcγR alleles confer different Ab-binding affinities by surface plasmon resonance and found minimal difference in binding affinities across alleles for a panel of wild type and Fc-engineered human IgG. This work suggests that although MCMs may not fully represent the diversity of FcγR responses in humans, they may offer highly reproducible results for mAb therapy and toxicity studies.


Assuntos
Genótipo , Macaca fascicularis , Receptores de IgG/genética , Alelos , Animais , Citotoxicidade Celular Dependente de Anticorpos , Frequência do Gene , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade , Imunoglobulina G/metabolismo , Modelos Animais , Ligação Proteica/genética , Receptores de IgG/metabolismo
9.
PLoS Pathog ; 13(7): e1006506, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708886

RESUMO

Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFα) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFα upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.


Assuntos
Trato Gastrointestinal/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais/imunologia , Receptores KIR3DL1/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Degranulação Celular , Proliferação de Células , Citocinas/imunologia , Feminino , Trato Gastrointestinal/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/citologia , Tecido Linfoide/imunologia , Macaca mulatta , Masculino , Receptores KIR3DL1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Regulação para Cima
10.
Immunogenetics ; 69(5): 325-339, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28343239

RESUMO

Killer cell immunoglobulin-like receptors (KIRs) modulate disease progression of pathogens including HIV, malaria, and hepatitis C. Cynomolgus and rhesus macaques are widely used as nonhuman primate models to study human pathogens, and so, considerable effort has been put into characterizing their KIR genetics. However, previous studies have relied on cDNA cloning and Sanger sequencing that lack the throughput of current sequencing platforms. In this study, we present a high throughput, full-length allele discovery method utilizing Pacific Biosciences circular consensus sequencing (CCS). We also describe a new approach to Macaque Exome Sequencing (MES) and the development of the Rhexome1.0, an adapted target capture reagent that includes macaque-specific capture probe sets. By using sequence reads generated by whole genome sequencing (WGS) and MES to inform primer design, we were able to increase the sensitivity of KIR allele discovery. We demonstrate this increased sensitivity by defining nine novel alleles within a cohort of Mauritian cynomolgus macaques (MCM), a geographically isolated population with restricted KIR genetics that was thought to be completely characterized. Finally, we describe an approach to genotyping KIRs directly from sequence reads generated using WGS/MES reads. The findings presented here expand our understanding of KIR genetics in MCM by associating new genes with all eight KIR haplotypes and demonstrating the existence of at least one KIR3DS gene associated with every haplotype.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Macaca fascicularis/genética , Receptores KIR/genética , Animais , Frequência do Gene , Macaca fascicularis/imunologia , Análise de Sequência de DNA/métodos
11.
PLoS Pathog ; 12(12): e1006048, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27926931

RESUMO

Within the first three weeks of human immunodeficiency virus (HIV) infection, virus replication peaks in peripheral blood. Despite the critical, causal role of virus replication in determining transmissibility and kinetics of progression to acquired immune deficiency syndrome (AIDS), there is limited understanding of the conditions required to transform the small localized transmitted founder virus population into a large and heterogeneous systemic infection. Here we show that during the hyperacute "pre-peak" phase of simian immunodeficiency virus (SIV) infection in macaques, high levels of microbial DNA transiently translocate into peripheral blood. This, heretofore unappreciated, hyperacute-phase microbial translocation was accompanied by sustained reduction of lipopolysaccharide (LPS)-specific antibody titer, intestinal permeability, increased abundance of CD4+CCR5+ T cell targets of virus replication, and T cell activation. To test whether increasing gastrointestinal permeability to cause microbial translocation would amplify viremia, we treated two SIV-infected macaque 'elite controllers' with a short-course of dextran sulfate sodium (DSS)-stimulating a transient increase in microbial translocation and a prolonged recrudescent viremia. Altogether, our data implicates translocating microbes as amplifiers of immunodeficiency virus replication that effectively undermine the host's capacity to contain infection.


Assuntos
DNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Viremia/virologia , Animais , Progressão da Doença , Feminino , Citometria de Fluxo , Imunofenotipagem , Inflamação/imunologia , Inflamação/virologia , Ativação Linfocitária/imunologia , Macaca fascicularis , Masculino , Reação em Cadeia da Polimerase , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA